diseño de receptores-transmisores QRP con hoja de calculo

eduardo alonso, EA3GHS joan morros, EA3FXF

EA QRP CLUB – sinarcas – mayo 2014

indice

- objetivos
- bloques básicos en circuitos de radio
- características comunes de los bloques
- medidas de nivel y ganancia
- del esquema eléctrico al esquema de bloques
- análisis de ganancias/perdidas de la cadena TX
- análisis del enlace entre lérida y múnich
- análisis de las primeras etapas del receptor

objetivos

análisis

a partir del esquema es posible deducir

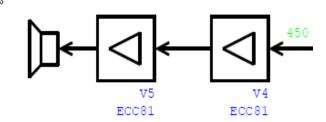
- niveles de señal en la entrada/salida de cada bloque
- prestaciones del sistema completo
- alcance del transmisor
- niveles de señal de estaciones lejanas o interferentes

síntesis

a partir de unos requerimientos (consumo, tamaño, dispositivos disponibles,..)

- identificar los bloques necesarios
- estimar los niveles de señal requeridos
- dimensionar los dispositivos del sistema
- añadir/quitar bloques o modificar ganancias/impedancias/niveles
 y obtener resultados rápidamente

para "probar" antes de "montar" sin necesidad de simulaciones

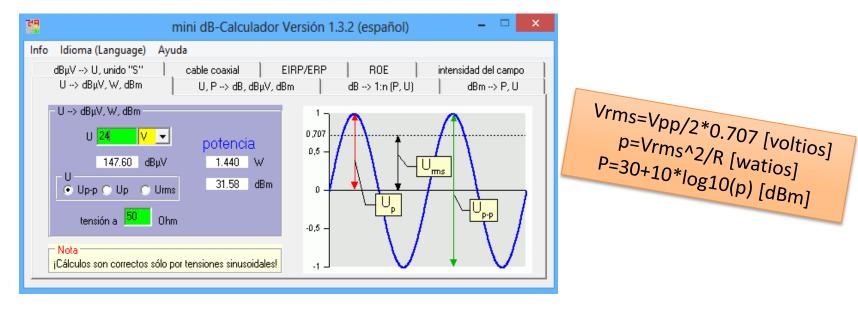

bloques básicos en circuitos de radio

- amplificadores incrementan el nivel del señal
- **filtros** selecciona la parte de interés del espectro una señal, atenuando el resto de espectro no deseado
- mezcladores traslada una banda de frecuencias a otra
- osciladores genera una señal de una frecuencia
- antenas transfiere señales entre un circuito y el espacio libre
- micrófono/altavoz convierte señales eléctricas a ondas sonoras
- transformador incrementa/decrementa la tensión (impedancia) de un circuito
- multiplicadores, desfasadores, atenuadores, líneas transmisión...

características comunes de los bloques

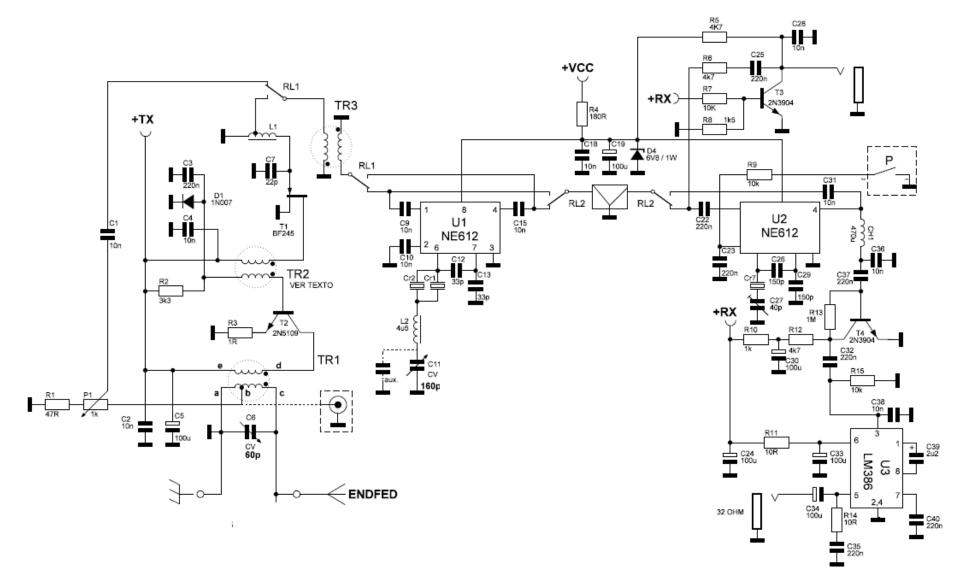
- 1. potencia de entrada
- 2. potencia de salida
- 3. ganancia=potencia_salida potencia_entrada
- 4. impedancia de entrada
- 5. impedancia de salida
- 6. nivel de potencia máxima y mínima

¿como determinar estos parámetros?

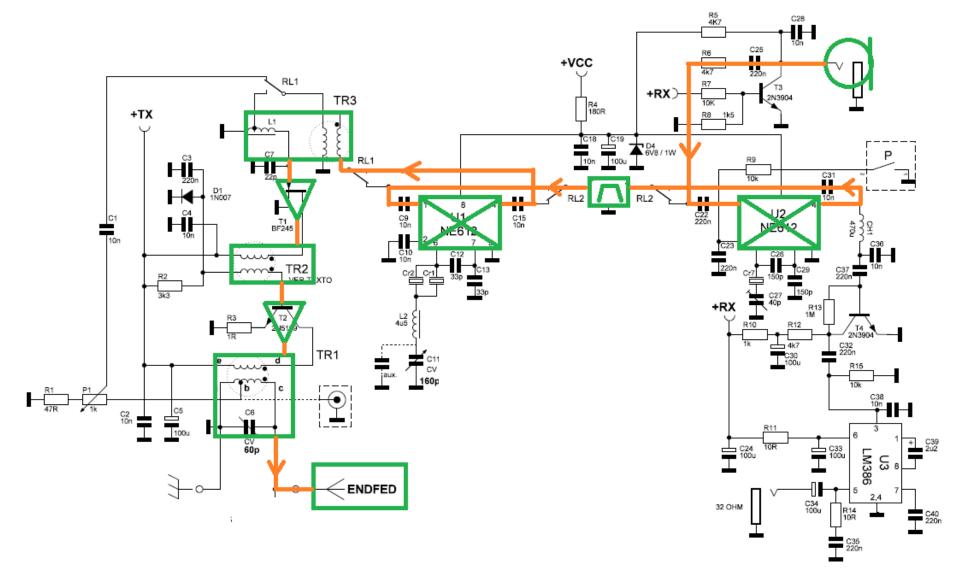


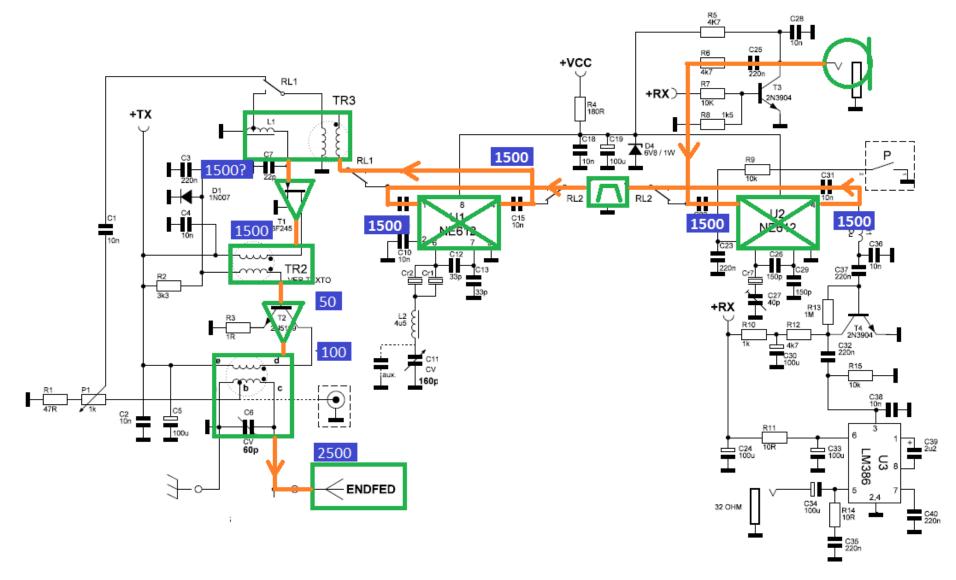
- analizando el circuito con lápiz y papel
- simulando con SPICE el circuito o con MMANA si es una antena
- montando el bloque y midiendo
- mirando los datos que aparecen en el datasheet del componente
- experiencia previa o estimación gruesa para un análisis rápido

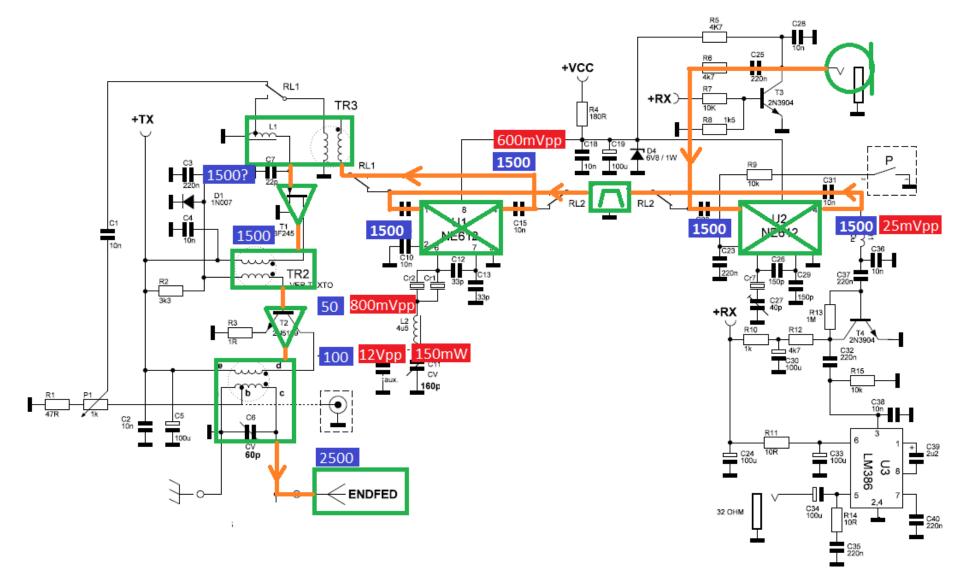
medidas de nivel y ganancia

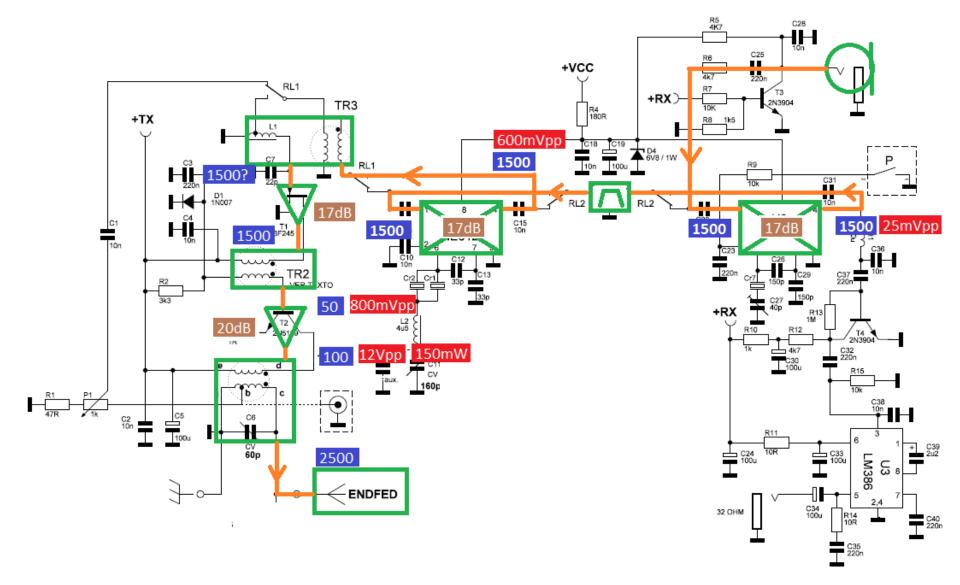

¿como medir el **nivel** de una señal?

- potencia sobre 50ohm con watímetro (módulo AD8307 en EBAY 30€)
- tensión pico-pico con un osciloscopio (impedancia circuito conocida)
- ojo al trabajar con señales no sinusoidales

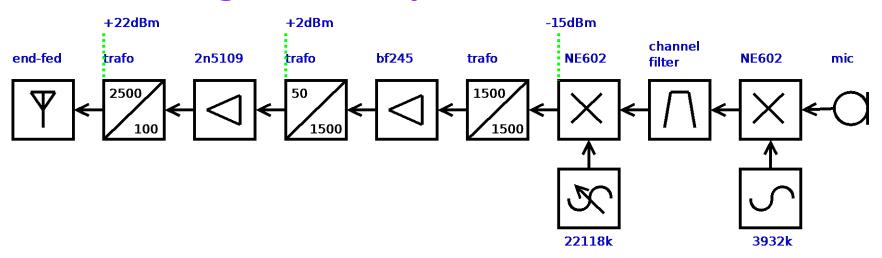



¿como medir ganancia?

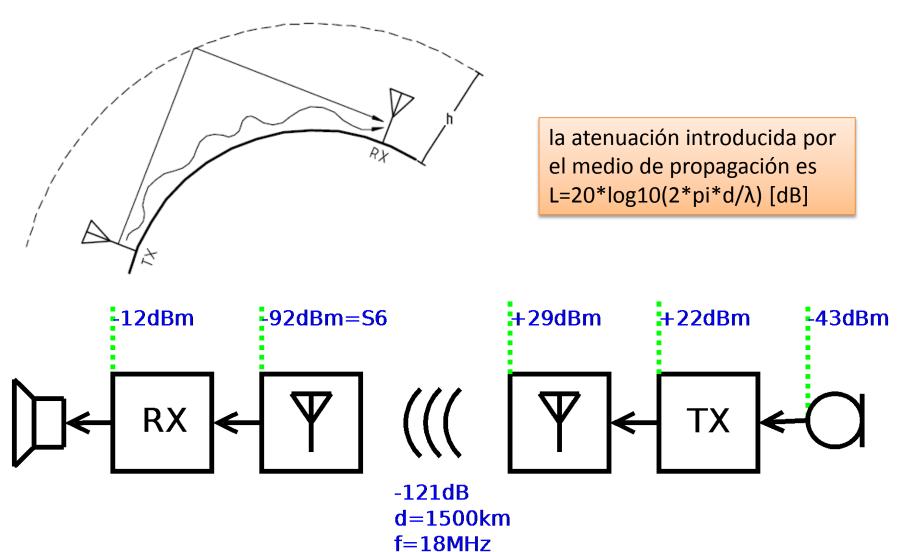

- diferencia entre los niveles de salida y entrada (en dBm)
- ojo, trabajar con señales mas pequeñas que nivel de saturación



7



análisis de ganancias/perdidas


	G	P	P	Z 0	V	I	
BLOQUE	dB	dBm	mW	ohm	mVpp	mAp	observaciones
MICROFONO		-43.0	0.000	1500	25	0.01	25mVpp medido con osciloscopio =-43dBm@1500ohi
NE602	17.0	-26.0	0.003	1500	174	0.06	G=17dB Z=1500 tomado del datasheet
FILTRO XTAL	-6.0	-32.0	0.001	1500	87	0.03	-6dB estimados. dificiles de medir
NE602	17.0	-15.0	0.032	1500	616	0.21	
TRAFO/FILTRO	0.0	-15.0	0.032	1500	616	0.21	TR3 baja de 1500 a 50, L1 sube de 50 a 1500
BF245	17.0	2.0	1.585	1500	4362	1.45	17dB medidos
TRAF0	0.0	2.0	1.585	50	796	7.96	resistencia base-emisor 2N5109 aprox 50ohm
2N5109	20.0	22.0	158.5	100	11262	56.31	100ohm deducidos por relacion espiras trafo TR1
TRAFO/FILTRO	0.0	22.0	158.5	2500	56309	11.26	Z antena end-fed=2500ohm
ANTENA	0.0	22.0	158.5	50	7963	79.63	Z antena dipolo=50ohm

- los niveles de potencia/Z/V/I están referidos a la salida de cada etapa
- 2N5109: BETA@18MHz=36, gm=((0.026/IC)+(1/RE))=0.5, rbe=BETA/gm=60 ohm

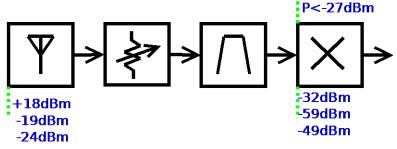
otros resultados del análisis

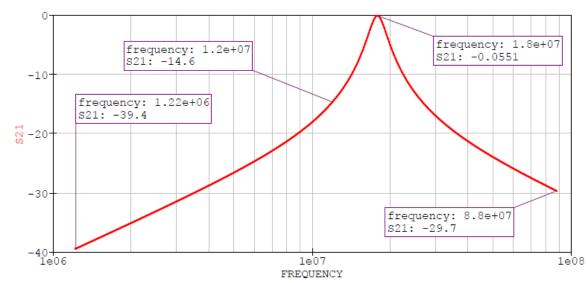
- detección de etapa saturada: incrementar el nivel de entrada hasta observar que Vpp>2*VCC o Ip>IBIAS o P>PMAX Pout NE602 = Pmax !!
- condiciones de polarización de cada etapa amplificadora
 - en función del nivel de Z y potencia a manejar
 - tensión de alimentación y corriente de polarización mínimas
 - optimización equipos alimentados a pilas (activaciones SOTA, vetices geod..)
- análisis de perdidas/ganancias fuera de la banda de paso: efectividad de los filtros
- ganancia "de reserva": errores o tolerancias en componentes y montaje
- distribución de ganancias y las pérdidas Gdriver < Gfinal !!
- estimar alcances máximos introduciendo la antena y las pérdidas de propagación
 - en SSB / 0.5W / end-fed no es posible llegar a Australia/Japón/ZL
- balance entre transmisor y receptor si TX QRP entonces ¿RX QRP? !!
 - ¿cuanta ganancia es necesaria en recepción?
 - TRX "PEREGRINO" tiene demasiada ganancia => es posible simplificar el diseño

análisis de un radioenlace: bloques

enlace entre lérida y múnich-nueva york-sídney

- se analizan tres alcances: continental, transatlántico y antípodas
- pérdidas en reflexiones en ionosfera y tierra no contabilizadas los nivel de señal serán inferior a las estimaciones
- la potencia del ruido es para un ancho de banda de 3kHz (audio)


ECUACION DE FRIIS		MUNICH		NY		SIDNEY	SMETER	dBm	RUID0
frecuencia	kHz	18118		18118		18118	0	-124	
longitud de onda	m	16.6		16.6		16.6	1	-118	
distancia desde lérida	km	1500		5000		20000	2	-112	CAMP0
perdidas propagación	dB	-121		-132		-144	3	- 106	
							4	- 100	
	G	Р	G	Р	G	P	5	-94	CIUDAD
BLOQUE	dB	dBm	dB	dBm	dB	dBm	6	-88	
entrada		-43		-43		-43	7	-82	
transmisor "peregrino"	65	22	65	22	65	22	8	-76	
antena TX end-fed	7	29	7	29	7	29	9	- 70	
perdidas propagación	-121	- 92	-132	- 103	-144	- 115			
perdidas reflexiones	0	- 92	0	- 103	0	- 115			
antena RX dipolo	3	-89	3	- 100	3	- 112			
cable coaxial	- 1	- 90	1	- 99	1	- 111			
entrada receptor		- 90		-99		-111			
		S6		S4		S2			


observaciones

- ganancia antena TX (+7dB) optimista
- ganancia antena RX (+3dB) poco optimista
- ruido en 18MHz varia entre S2 campo y S5 ciudad
- la posibilidad del **enlace depende del nivel de ruido** en la estación receptora
- cuadruplicar la potencia del transmisor (+6dB)
 incrementa una unidad S y el peso de las baterías
- la operación QRPp es un compromiso entre calidad de la estación receptora, distancia, condiciones de propagación y pericia operativa

análisis de las etapas de entrada del receptor

- 1224kHz 2kW → T 10km -48dB 88MHz 2kW → T 10km -85dB 12MHz 100kW → T 500km -107dB
- tres fuentes de interferencia
- la antena no resonante actúa como filtro
- filtro preselector: un resonador LC simple
- mezclador NE602 con potencia máxima -27dBm

análisis de las etapas de entrada del receptor

- el emisor de OM es el más problemático: queda 5dB por debajo del nivel máximo
- la estación alemana de referencia queda entre 0 y 30dB por debajo de las señales interferentes
- El filtro preselector es muy muy justo y pone en apuros al NE602

		COPE		RADIO	ΙA	MATEUR		FM		W	dBm
ECUACION DE FRIIS		LERIDA	RIDA EXT ESP		STATION		S1	STATION		0.001	0
frecuencia, kHz		1224		12000		18118		88000		0.010	10
longitud de onda, m		245.1		25.0		16.6		3.4		0.100	20
distancia, km		5		450		1500		5		1	30
perdidas propagación, dB		- 48		- 107		-121		-85		2	33
										5	37
	G	Р	G	Р	G	Р	G	Р		10	40
BLOQUE	dB	dBm	dB	dBm	dB	dBm	dB	dBm		50	47
transmisor		63		80		50		63		100	50
antena	3	66	3	83	3	53	3	66		1000	60
perdidas propagación	-48	18	- 107	-24	-121	- 68	-85	- 19		2000	63
antena	- 10	8	- 10	-34	7	-61	- 10	- 29		100000	80
filtro preselector	- 40	- 32	- 15	- 49	0	-61	- 30	- 59			
mezclador NE602		-32		- 49		-61		- 59			
relacion señal/interferencia -				- 12		REF0		- 2			
margen hasta saturacion -270	5		22		34		32			1.0	

referencias

- Radiocomunicaciones, Francisco Ramos, Ed Marcombo
- ARRL Handbook 2013, capítulo 12.4
- Agilent "ADS RF Budget Analysis" (rfsysbudget.pdf)
- http://en.wikipedia.org/wiki/Link_budget
- http://en.wikipedia.org/wiki/Friis_transmission_equation
- http://en.wikipedia.org/wiki/Free-space_path_loss
- http://ea3ghs.qrp.cat/sinarcas2014.xlsx
- http://ea3ghs.qrp.cat/peregrino.html